xailib.xailib_imageο
Image data explainability classes for XAI-Lib.
This module provides base classes for explaining predictions on image data.
It extends the base Explainer and
Explanation classes with image-specific
functionality.
Image explanations typically highlight which regions of an image contributed most to a modelβs prediction, using techniques such as:
Saliency maps and heatmaps
Superpixel importance
Activation visualizations
- Classes:
ImageExplainer: Base class for image data explainers. ImageExplanation: Base class for image data explanations.
Example
Using GradCAM for image explanation:
from xailib.explainers.gradcam_explainer import GradCAMImageExplainer
from xailib.models.pytorch_classifier_wrapper import pytorch_classifier_wrapper
# Wrap your model
bb = pytorch_classifier_wrapper(your_pytorch_model)
# Create and fit explainer
explainer = GradCAMImageExplainer(bb)
explainer.fit(target_layers=[model.layer4])
# Generate explanation
heatmap = explainer.explain(image, class_index)
See also
xailib.explainers.gradcam_explainer: GradCAM implementation for image data.
xailib.explainers.lime_explainer: LIME implementation for image data.
xailib.explainers.rise_explainer: RISE implementation for image data.
xailib.explainers.intgrad_explainer: Integrated Gradients for image data.
Classes
Abstract base class for image data explainers. |
|
Abstract base class for image data explanations. |