xailib.xailib_tabular
Tabular data explainability classes for XAI-Lib.
This module provides base classes for explaining predictions on tabular
(structured) data. It extends the base Explainer
and Explanation classes with tabular-specific
functionality, including interactive feature importance visualization.
- Tabular data explanations are commonly used for:
Understanding feature contributions to predictions
Generating human-readable decision rules
Identifying similar and contrasting examples
Creating counterfactual explanations
- Classes:
TabularExplanation: Base class for tabular data explanations. TabularExplainer: Base class for tabular data explainers.
Example
Using LIME for tabular explanation:
from xailib.explainers.lime_explainer import LimeXAITabularExplainer
from xailib.models.sklearn_classifier_wrapper import sklearn_classifier_wrapper
# Wrap your model
bb = sklearn_classifier_wrapper(your_sklearn_model)
# Create and fit explainer
explainer = LimeXAITabularExplainer(bb)
explainer.fit(df, 'target_column', config={})
# Generate explanation
explanation = explainer.explain(instance)
explanation.plot_features_importance()
See also
xailib.explainers.lime_explainer: LIME implementation for tabular data.
xailib.explainers.shap_explainer_tab: SHAP implementation for tabular data.
xailib.explainers.lore_explainer: LORE implementation for tabular data.
Classes
Abstract base class for tabular data explainers. |
|
Abstract base class for tabular data explanations. |