xailib.data_loaders packageο
Submodulesο
xailib.data_loaders.dataframe_loader moduleο
DataFrame loading and preparation utilities for XAI-Lib.
This module provides utilities for loading and preparing pandas DataFrames for use with XAI-Lib tabular data explainers.
- Functions:
prepare_dataframe: Prepare a DataFrame for use with explainers.
Example
>>> from xailib.data_loaders.dataframe_loader import prepare_dataframe
>>>
>>> df, feature_names, class_values, numeric_columns, \
... rdf, real_feature_names, features_map = prepare_dataframe(df, 'target')
- xailib.data_loaders.dataframe_loader.prepare_dataframe(df, class_field)[source]ο
Prepare a pandas DataFrame for use with XAI-Lib explainers.
This function wraps the LORE libraryβs prepare_dataset function to process a DataFrame for use with various XAI-Lib explainers. It handles feature encoding, categorical variable mapping, and other preprocessing steps.
- Parameters:
df (pd.DataFrame) β Input DataFrame containing features and target.
class_field (str) β Name of the target/class column in the DataFrame.
- Returns:
- A tuple containing:
df: Processed DataFrame
feature_names: List of feature column names
class_values: List of unique class values
numeric_columns: List of numeric column names
rdf: Reconstructed DataFrame with original encoding
real_feature_names: Original feature names before encoding
features_map: Mapping of encoded to original features
- Return type:
Example
>>> import pandas as pd >>> df = pd.DataFrame({ ... 'age': [25, 30, 35], ... 'income': [50000, 60000, 70000], ... 'approved': [0, 1, 1] ... }) >>> result = prepare_dataframe(df, 'approved') >>> df_processed, feature_names, class_values, *rest = result
Module contentsο
Data loading utilities for XAI-Lib.
This subpackage provides utilities for loading and preparing data for use with XAI-Lib explainers.
Available Loadersο
prepare_dataframe(): Prepare a pandas DataFrame for use with XAI-Lib explainers.
Example
>>> from xailib.data_loaders.dataframe_loader import prepare_dataframe
>>>
>>> df, feature_names, class_values, numeric_columns, \
... rdf, real_feature_names, features_map = prepare_dataframe(df, 'target')