xailib.xailib_textο
Text data explainability classes for XAI-Lib.
This module provides base classes for explaining predictions on text data.
It extends the base Explainer and
Explanation classes with text-specific
functionality.
Text explanations typically highlight which words or phrases contributed most to a modelβs prediction. Common use cases include:
Sentiment analysis explanation
Text classification explanation
Named entity recognition explanation
- Classes:
TextExplainer: Base class for text data explainers. TextExplanation: Base class for text data explanations.
Example
Using LIME for text explanation:
from xailib.explainers.lime_explainer import LimeXAITextExplainer
from xailib.models.sklearn_classifier_wrapper import sklearn_classifier_wrapper
# Wrap your model
bb = sklearn_classifier_wrapper(your_text_classifier)
# Create and fit explainer
explainer = LimeXAITextExplainer(bb)
explainer.fit(class_names=['negative', 'positive'])
# Generate explanation
explanation = explainer.explain("This movie was great!")
See also
xailib.explainers.lime_explainer: LIME implementation for text data.
Note
Text explanation support is currently being expanded. Additional methods will be added in future releases.
Classes
Abstract base class for text data explainers. |
|
Abstract base class for text data explanations. |